

1

Bridge Pattern Implementation Lab Task 1

Introduction & Concept

In this lab task we will learn how to implement the bridge pattern using C#.Net

• Lets you split a large class or a set of closely related classes into two separate

hierarchies - abstraction and implementation.

• Decouple an abstraction from its implementation so that the two can vary

independently.

• This patten is used to separate an abstraction from its implementation so that

both can be modified independently.

• It involves an interface which acts as a bridge between the abstraction class and

implementer classes.

• The following UML diagram illustrates the structure of bridge pattern.

2

The Problem

An electronic device manufactures company decided to design a remote control for

controlling different devices. They want its initial version to have only two functions ON

and OFF and operate for VCD and TV.

Class Diagram

3

Implementation

1. Create a console application in visual studio and name it BridgeApp.

2. Create a folder and name it BasicBridgeImplementation

3. Create IState.CS file in this folder and write the following code in it:

 /// <summary>
 /// Implementor
 /// </summary>
 public interface IState
 {
 void MoveState();
 }

The above created interface declares a single method MoveState (). The functionality of
implementor to be implemented by the concreted implementors.

In the next step we are going to provide the concrete implementation for the above

created interface.

 4. Create OnState.cs file in this folder and write the following code in it:

 /// <summary>
 /// Concrete Implementor 1
 /// </summary>
 public class OnState : IState
 {
 public void MoveState()
 {
 Console.Write("On State");
 }
 }

This concreate implementor is responsible to turn the device state on. It implements the
IState interface to provide the concreted implementation.

Next, we will create another concrete implementor the same OnState implementor is

created.

4

5. Create OffState.cs file in this folder and write the following code in it:

 /// <summary>
 /// Concrete Implementor 2
 /// </summary>
 public class OnState : IState
 {
 public void MoveState()
 {
 Console.Write("Off State");
 }
 }

This concreate implementor is responsible to turn the device state off. It implements
the IState interface to provide the concreted implementation.

We have successfully finished the development for the implementor hierarchy
according to the bridge design pattern solution.

Next, we are going to start developing the abstraction hierarchy of classes according to
the bridge design pattern guidelines.

6. Create ElectronicGoods.cs file in this folder and write the following code in

it:

 /// <summary>
 /// Abstration
 /// </summary>
 public abstract class ElectronicGoods
 {
 //Reference to the Implementor
 public IState State { get; set; } = new OffState();
 public abstract void MoveToCurrentState();
 }

In above abstract class we prefer composition over inheritance and composed the

implementor and set its default state to OffState because it the default behavior of

almost every device. We also defined MoveToCurrentState () asbstract method that will

be redefined according to the device implementation.

5

Next, we are going to create concrete implementation for redefining abstraction for the

Television device.

7. Create Television.cs file in this folder and write the following code in it:

 /// <summary>
 /// Redefined Abstration for Television
 /// </summary>
 public class Television : ElectronicGoods
 {
 public override void MoveToCurrentState()
 {
 Console.Write($"Television is fucntioning at : ");
 State.MoveState();
 Console.WriteLine();
 }
 }

We inherit from the abstract base class ElectronicGoods and redefined the abstraction in
it. We overridden the MoveToCurrentState() method and execute the MoveState()
behavior of concrete implementor through IState interface.

Next, we are going to create another concrete implementation for redefining the
abstraction for VCD device.

8. Create VCD.cs file in this folder and write the following code in it:

 /// <summary>
 /// Redefined Abstration for VCD
 /// </summary>
 public class VCD : ElectronicGoods
 {
 public override void MoveToCurrentState()
 {
 Console.Write("VCD is fucntioning at : ");
 State.MoveState();
 Console.WriteLine();
 }
 }

The VCD redefines the abstract base class abstraction the same way it’s redefined in the
Television class above.

6

Next, we will create a client class that will show how to use above implementation of

the bridge design pattern in the client code.

9. Create Demo.cs file in this folder and write the following code in it:

 /// <summary>
 /// Client for Bridge Demo
 /// </summary>
 public static class Demo
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Bridge Pattern Demo\n");
 Console.WriteLine("Dealing with Television\n");

 //Default State if off
 ElectronicGoods device = null;

 device = new Television();
 device.MoveToCurrentState();

 //Change State to On
 device.State = new OnState();
 device.MoveToCurrentState();

 Console.WriteLine("Dealing with VCD\n");
 //Default State if off
 device = new VCD();
 device.MoveToCurrentState();

 //Change State to On
 device.State = new OnState();
 device.MoveToCurrentState();

 Console.ReadKey();
 }

 }

7

Program Output

Summary

The main purpose of the Bridge Pattern is to split a large class or a set of closely related
classes into two separate hierarchies - abstraction and implementation.

In this lab task we have learned what is a bridge pattern and how to implement it using
C#. We have also learned how this pattern prefers object composition over inheritance.
We composed the implementor interface to store the concrete implementor reference
in abstract base class that defines the abstraction. We redefined the abstractions by
providing implementations through concreate classes i.e. Television and VCD.

Goodbye, wish you all the best and see you in next lab task!

